

LMC6044

CMOS Quad Micropower Operational Amplifier

General Description

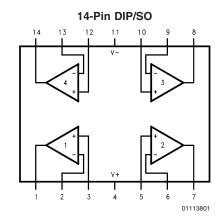
Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6044. Providing input currents of only 2 fA typical, the LMC6044 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground.

The LMC6044 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.

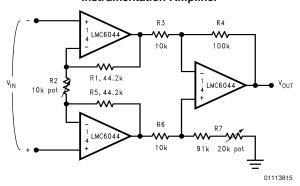
Other applications for the LMC6044 include bar code reader amplifiers, magnetic and electric field detectors, and handheld electrometers.

This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.

See the LMC6041 for a single, and the LMC6042 for a dual amplifier with these features.


Features

- Low supply current: 10 µA/Amp (Typ)
- Operates from 4.5V to 15.5V single supply
- Ultra low input current: 2 fA (Typ)
- Rail-to-rail output swing
- Input common-mode range includes ground


Applications

- Battery monitoring and power conditioning
- Photodiode and infrared detector preamplifier
- Silicon based transducer systems
- Hand-held analytic instruments
- pH probe buffer amplifier
- Fire and smoke detection systems
- Charge amplifier for piezoelectric transducers

Connection Diagram

Instrumentation Amplifier

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage ±Supply Voltage Supply Voltage (V+ - V-) 16V Output Short Circuit to V+ (Note 12) Output Short Circuit to V-(Note 2) Lead Temperature (Soldering, 10 sec.) 260°C ±5 mA Current at Input Pin Current at Output Pin ±18 mA Current at Power Supply Pin 35 mA

Storage Temperature Range -65°C to +150°C

Junction Temperature (Note 3) 110° C ESD Tolerance (Note 4) 500V Voltage at I/O Pin (V⁺) +0.3V, (V⁻) -0.3V

Operating Ratings

Temperature Range

LMC6044AI, LMC6044I $-40^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq$

+85°C

Supply Voltage $4.5V \le V+ \le 15.5V$ Power Dissipation (Note 10)

Thermal Resistance (θ_{JA}), (Note 11)

14-Pin DIP 85°C/W 14-Pin SO 115°C/W

Electrical Characteristics

Power Dissipation

Unless otherwise specified, all limits guaranteed for $T_A = T_J = 25^{\circ}C$. **Boldface** limits apply at the temperature extremes. $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 1.5V$, $V_O = V^+/2$, and $R_L > 1M$ unless otherwise specified.

(Note 3)

				Typical	LMC6044AI	LMC6044I	Units
Symbol	Parameter	Conditions	•	(Note 5)	Limit	Limit	(Limit)
					(Note 6)	(Note 6)	
Vos	Input Offset Voltage			1	3	6	mV
					3.3	6.3	max
TCVos	Input Offset Voltage			1.3			μV/°C
	Average Drift						
I _B	Input Bias Current			0.002	4	4	pA
							max
I _{os}	Input Offset Current			0.001	2	2	pA
							max
R _{IN}	Input Resistance			>10			TeraΩ
CMRR	Common Mode	$0V \le V_{CM} \le 12.0V$		75	68	62	dB
	Rejection Ratio	V ⁺ = 15V			66	60	min
+PSRR	Positive Power Supply	5V ≤ V ⁺ ≤ 15V		75	68	62	dB
	Rejection Ratio	V _O = 2.5V			66	60	min
-PSRR	Negative Power Supply	0V ≤ V ⁻ ≤ −10V		94	84	74	dB
	Rejection Ratio	V _O = 2.5V			83	73	min
CMR	Input Common-Mode	V+ = 5V & 15V		-0.4	-0.1	-0.1	V
	Voltage Range	For CMRR ≥ 50 dB			0	0	max
				V ⁺ - 1.9V	V+ - 2.3V	V ⁺ – 2.3V	V
					V+ - 2.5V	V+ - 2.4V	min
A _V	Large Signal	$R_L = 100 \text{ k}\Omega \text{ (Note 7)}$	Sourcing	1000	400	300	V/mV
	Voltage Gain				300	200	min
			Sinking	500	180	90	V/mV
					120	70	min
		$R_L = 25 \text{ k}\Omega \text{ (Note 7)}$	Sourcing	1000	200	100	V/mV
					160	80	min
			Sinking	250	100	50	V/mV
					60	40	min

Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_A = T_J = 25$ °C. **Boldface** limits apply at the temperature extremes. $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 1.5V$, $V_O = V^+/2$, and $R_L > 1M$ unless otherwise specified.

			Typical	LMC6044AI	LMC6044I	Units
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	(Limit)
				(Note 6)	(Note 6)	
Vo	Output Swing	V ⁺ = 5V	4.987	4.970	4.940	V
		$R_L = 100 \text{ k}\Omega \text{ to } 2.5\text{V}$		4.950	4.910	min
			0.004	0.030	0.060	V
				0.050	0.090	max
		V+ = 5V	4.980	4.920	4.870	V
		$R_L = 25 \text{ k}\Omega \text{ to } 2.5\text{V}$		4.870	4.820	min
			0.010	0.080	0.130	V
				0.130	0.180	max
		V ⁺ = 15V	14.970	14.920	14.880	V
		$R_L = 100 \text{ k}\Omega \text{ to V}^+/2$		14.880	14.820	min
			0.007	0.030	0.060	V
				0.050	0.090	max
		V ⁺ = 15V	14.950	14.900	14.850	V
		$R_L = 25 \text{ k}\Omega \text{ to } V^+/2$		14.850	14.800	min
			0.022	0.100	0.150	V
				0.150	0.200	max
I _{sc}	Output Current	Sourcing, V _O = 0V	22	16	13	mA
	V ⁺ = 5V			10	8	min
		Sinking, $V_O = 5V$	21	16	13	mA
				8	8	min
I _{sc}	Output Current	Sourcing, V _O = 0V	40	15	15	mA
	V ⁺ = 15V			10	10	min
		Sinking, $V_O = 13V$	39	24	21	mA
		(Note 12)		8	8	min
Is	Supply Current	Four Amplifiers	40	65	75	μA
		V _O = 1.5V		72	82	max
		Four Amplifiers	52	85	98	μΑ
		V ⁺ = 15V		94	107	max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = T_J = 25$ °C. **Boldface** limits apply at the temperature extremes. $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 1.5V$, $V_O = V^+/2$, and $R_L > 1M$ unless otherwise specified.

			Typical	LMC6044AI	LMC6044I	Units
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	(Limit)
				(Note 6)	(Note 6)	
SR	Slew Rate	(Note 8)	0.02	0.015	0.010	V/µs
				0.010	0.007	min
GBW	Gain-Bandwidth Product		0.10			MHz
φ _m	Phase Margin		60			Deg
	Amp-to-Amp Isolation	(Note 9)	115			dB
e _n	Input-Referred	F = 1 kHz	83			nV/√Hz
	Voltage Noise					
i _n	Input-Referred	F = 1 kHz	0.0002			pA/√Hz
	Current Noise					

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_A = T_J = 25^{\circ}C$. **Boldface** limits apply at the temperature extremes. $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 1.5V$, $V_O = V^+/2$, and $R_L > 1M$ unless otherwise specified.

			Typical	LMC6044AI	LMC6044I	Units
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	(Limit)
				(Note 6)	(Note 6)	
T.H.D.	Total Harmonic	$F = 1 \text{ kHz}, A_V = -5$				
	Distortion	$R_L = 100 \text{ k}\Omega, V_O = 2 V_{pp}$	0.01			%
		±5V Supply				

Note 1: Absolute Maximum Ratings indicate limts beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 110°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

Note 3: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$.

Note 4: Human body model, 1.5 k Ω in series with 100 pF.

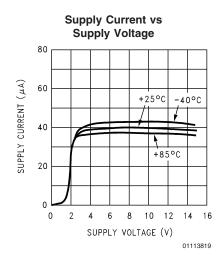
Note 5: Typical Values represent the most likely parametric norm.

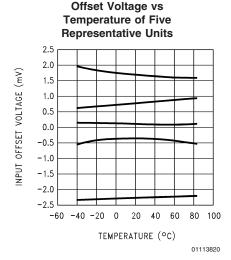
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).

Note 7: $V^+ = 15V$, $V_{CM} = 7.5V$ and R_L connected to 7.5V. For Sourcing tests, 7.5V $\leq V_O \leq 11.5V$. For Sinking tests, 2.5V $\leq V_O \leq 7.5V$.

Note 8: V+ = 15V. Connected as Voltage Follower with 10V step input. Number specified in the slower of the positive and negative slew rates.

Note 9: Input referred V⁺ = 15V and $R_L = 100 \text{ k}\Omega$ connected to V⁺/2. Each amp excited in turn with 100 Hz to produce $V_Q = 12 \text{ V}_{PP}$.


Note 10: For operating at elevated temperatures, the device must be derated based on the thermal resistance θ_{JA} with $P_D = (T_J - T_A)/\theta_{JA}$.

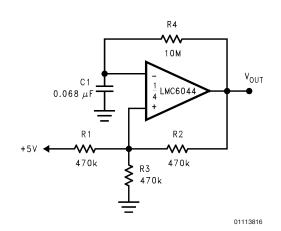

Note 11: All numbers apply for packages soldered directly into a PC poard.

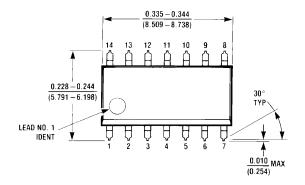
Note 12: Do not connect output to V+ when V+ is greater than 13V or reliability may be adversely affected.

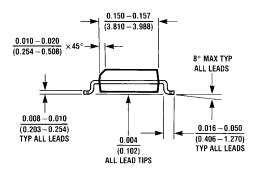
Typical Performance Characteristics

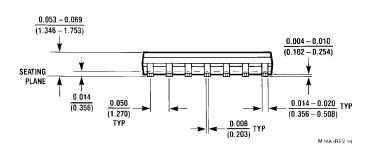
 $V_S = \pm 7.5V$, $T_A = 25^{\circ}C$ unless otherwise specified

Typical Single-Supply Applications (V+ = 5.0 V_{DC}) (Continued)

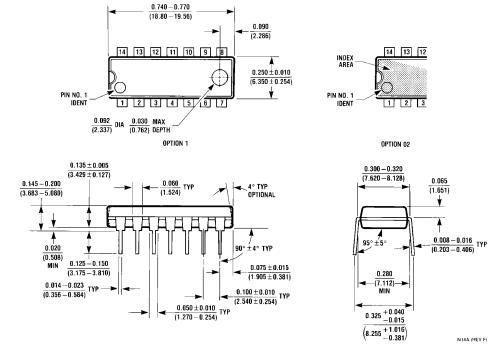



FIGURE 12. AC Coupled Power Amplifier


FIGURE 11. 1 Hz Square-Wave Oscillator


Ordering Information

	Temperature Range	NSC	Transport Media	
Package	Industrial	Drawing		
	−40°C to +85°C	Diawing		
14-Pin	LMC6044AIM, LMC6044AIMX	M14A	Rail	
Small Outline	LMC6044IM, LMC6044IMX		Tape and Reel	
14-Pin	LMC6044AIN	N14A	Rail	
Molded DIP	LMC6044IN			


Physical Dimensions inches (millimeters) unless otherwise noted

14-Pin Small Outline Order Package Number LMC6044AIM, LMC6044AIMX, LMC6044IM or LMC6044IMX NS Package Number M14A

14-Pin Molded DIP Order Package Number LMC6044AIN or LMC6044IN NS Package Number N14A